

Reducing mean wind speed uncertainty from floating LiDARs: For a fairer energy yield uncertainty budget



2024-05-03 VindkraftNet meeting

## Introduction

- Several of validation campaigns between cups and onshore lidars show that over the testing period (months), <u>mean relative deviations are smaller than 2</u>% (at 90-100 mASL).
- 2) Yet, mean wind speed values from both cups and LiDARs are typically assumed to have an uncertainty of 2%.
- 3) How can this be?

If both cups and LiDARs had an uncertainty of 2%:

- > We would see cases of mean relative deviations larger than 2%.
- But we don't see these cases.

A possible explanation: LiDARs and cups uncertainties are smaller than 2%



#### Content

- Case 1: Illustration from numerical experiment
- Case 2: Application to floating LiDARs
- Discussion on existing validations above 100 mASL
- Conclusions



# **Case 1: Illustration from numerical experiment**

1. We assume that one cup anemometer is used for validating 10 LiDAR devices.

2. We assigned the following uncertainty to both cups and LiDAR measurements:

|            | Uncertainty |      |  |  |  |  |
|------------|-------------|------|--|--|--|--|
|            | Lidar       | Сир  |  |  |  |  |
| Scenario 1 | 2.0%        | 2.0% |  |  |  |  |
| Scenario 2 | 1.0%        | 1.0% |  |  |  |  |
| Scenario 3 | 0.5%        | 1.0% |  |  |  |  |
| Scenario 4 | 0.5%        | 0.5% |  |  |  |  |

- 3. We consider 250 tests, and a single true value of 10 m/s.
- 4. For each test we randomly pick a value of measured wind speed from the LiDAR, and one for the cup anemometer (for the entire test period).
- 5. Then, we compute the relative difference between the two and check if it is larger than 2%.

6. We repeat the whole thing (i.e. the 250 tests) 500 times.



#### **Case 1: Illustration from numerical experiment**

- With 2% uncertainty for LiDARs and cup, between 80 and 160 LiDAR devices (out of 250) would fail.
- With 1% uncertainty, the number of failed test drastically reduces, but there are still dozens of failed test.
- 0.5% uncertainty to a very small numbers of failed test.



#### **Case 2: Application to floating LiDARs**

- Results from 18 FLS publicly available validation reports were used.
- Relative difference of mean wind speed between reference instrument and FLS was calculated.
- Only wind speeds at, or close to, 100 mMSL were used.

|    | N  | Document                          | Supplier | FLS type     | LiDAR type | FLS unit | Reference device  | Instrument<br>reference | Location            |
|----|----|-----------------------------------|----------|--------------|------------|----------|-------------------|-------------------------|---------------------|
| iL | 1  | 10298247-R-1, Rev. A              | Fugro    | Seawatch     | ZXM585     | WS170    | Offshore LiDAR    | WLS7-258                | LEG                 |
|    | 2  | 10129033-R-6, Rev. E              | Fugro    | Seawatch     | ZX818      | WS187    | Onshore LiDAR     | ZP495                   | Frøya               |
|    | 3  | 10129033-R-7, Rev. D              | Fugro    | Seawatch     | ZX802      | WS188    | Onshore LiDAR     | ZP495                   | Frøya               |
|    | 4  | GLGH-4270 16 13920-R-0002, Rev. C | Fugro    | Seawatch     | Z417       | WS140    | Onshore LiDAR     | Z495                    | Frøya               |
|    | 5  | GLGH-4257 13 10378-R-0004, Rev. A | Fugro    | Seawatch     | Z428       | WS149    | Onshore LiDAR     | Z495                    | Frøya               |
|    | 6  | GLGH-4270 17 14462-R-0001, Rev. D | Fugro    | Seawatch     |            | WS149    | Onshore LiDAR     |                         | Frøya               |
|    | 7  | GLGH-4257 13 10378-R-0005, Rev. E | Fugro    | Seawatch     | Z501       | WS156    | Onshore LiDAR     | Z495                    | Frøya               |
|    | 8  | GLGH-4257 13 10378-R-0006, Rev. C | Fugro    | Seawatch     | Z442       | WS157    | Onshore LiDAR     | Z495                    | Frøya               |
|    | 9  | GLGH-4270 16 13920-R-0001, Rev. D | Fugro    | Seawatch     |            | WS158    | Onshore LiDAR     |                         | Frøya               |
|    | 10 | GLGH-4270 17 14462-R-0002, Rev. C | Fugro    | Seawatch     | ZP585      | WS170    | Onshore LiDAR     | ZP495                   | Frøya               |
|    | 11 | 10129033-R-10, Rev. B             | Fugro    | Seawatch     | ZX843      | WS190    | Onshore LiDAR     | ZP495                   | Frøya               |
|    | 12 | 10129033-R-11, Rev. B             | Fugro    | Seawatch     | ZX862      | WS191    | Onshore LiDAR     | ZP495                   | Frøya               |
|    | 13 | 10281716-R-2, Rev. B              | Fugro    | Seawatch     | ZX759      | WS191    | Onshore LiDAR     | ZX428                   | Frøya               |
|    | 14 | 10189146-R-3, Rev. B              | Fugro    | Seawatch     | ZX898      | WS199    | Onshore LiDAR     | ZX428                   | Frøya               |
|    | 15 | 10124962-R-2-A                    | Eolos    | FLS-200      | ZX842      | E05      | Offshore met mast | Anemometers             | Narec NOAH met mast |
|    | 16 | 10124962-R-3-A                    | Eolos    | FLS-200      | ZX844      | E06      | Offshore met mast | Anemometers             | Narec NOAH met mast |
|    | 17 | 10161669-R-01, Rev. C             | AXYS     | WindSentinel | WLS866-25  | Buoy120  | Lidar             | WLS7-436                | ASIT                |
|    | 18 | 10161669-R-02, Rev. C             | AXYS     | WindSentinel | WLS866-24  | Buoy130  | Lidar             | WLS7-436                | ASIT                |

Independent performance verification of Floating Lidar Buoy 120 at Martha's Vineyard Coastal Observatory

DNV

Ocean Tech Services, LLC

Report No.: 10161669-R-01, Rev. C Date 16 June 2020



|  | - |
|--|---|
|  |   |
|  |   |

# **Case 2: Application to floating LiDARs**

- In 17 of all 18 cases analyzed the mean wind speed from the FLS is within an interval of ± 2% of relative difference.
- In 13 of all 18 cases analyzed the mean wind speed from the FLS is within an interval of ± 1% of relative difference.



### **Discussion on existing validations above 100 mASL**

- Based on publicly available documents, validation of LiDAR measurements above 90-100 mASL show small deviations as well:
  - 1 x DTU Østerild: Vaisala WL866-26

Advanced

- 1 x KNMI Cabauw (https://amt.copernicus.org/articles/14/2219/2021/): ZX



Access to this document is prohibited. We were not able to find anythin

## **Discussion on existing validations above 100 mASL**



C2WIND

R<sup>2</sup> = 1.0000 8 10 12 14 16 18 v\_Mast@130.0 m [m/s]

6

y = 0.9836 x + 0.2778

20

Windcube: ~2-3% deviation is likely caused by scalar

## Conclusions

- Onshore LiDAR and FLS uncertainty equal to 2% appears to be too conservative.
- Limited validation studies above 100 mASL show deviation smaller than 2%.
- Most of the validation reports were carried out in well known sites in Europe, atmospheric stability conditions and aerosol content may lead to deviations between lidars.



## Where to find validation reports (all public)

#### eo-winds.net



