

Temporal and spatial resolution in hindcasts: relevance for offshore wind design work. #Resolution #Fidelity

Areas of Expertise

In this presentation

#BulletPoints<3 #IEC61400-3

Hindcasts = {Reanalysis; Downscaled Reanalysis (for ex using WRF)}

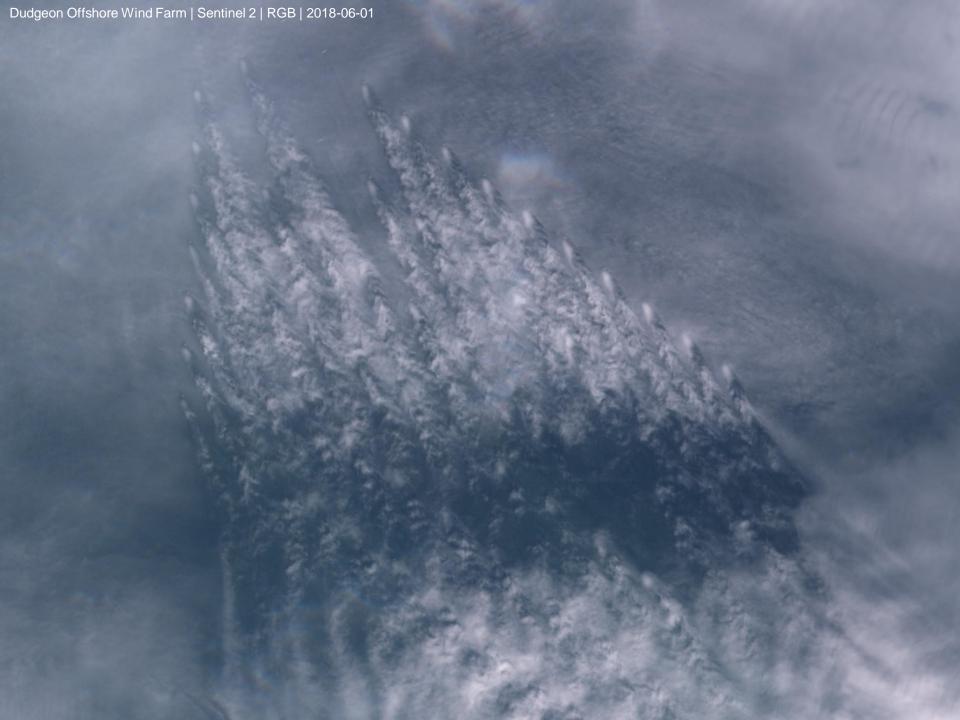
Resolution and Fidelity, relevance for*:

- Normal Wind Conditions
- > Normal Sea State
- > Extreme Sea State
- > Severe Sea State

Fatigue Loads

Extreme Loads (for ex: 1/50 annual probability)

*foundation design; IEC61400-3 terminology


#BulletPoints<3 #IEC61400-3

Trivial to say it: wind, waves, water level and currents vary in time and space, with scales covering several orders of magnitudes.

We typically have, at hand for design work, a variety of wind information:

- ➤ What datasets for what type of analysis?
- ➤ How do they fit together in the Design Basis?

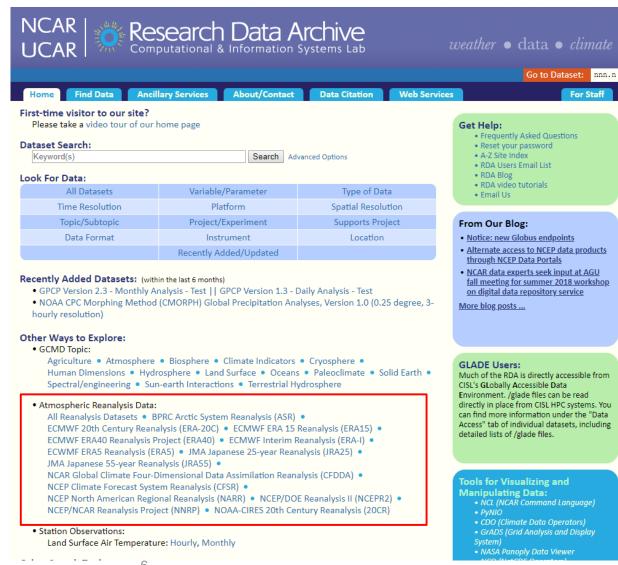
Source	Spatial resolution		Temporal resolution				
	Horiz.	Vert.	Averaging.	Frequency (step)	Sampling.	Length.	
Cup measurements.	1 m	1 m	10 min	1 s	10 min	1 year	
LiDAR measurements.	10 m	10 m	10 min	1 s	10 min	1 year	
Mesoscale models	1 km	10 m	10min to 1h	1-10s	1 h	10 year	
Reanalysis models	10 km	100 m	1 h	1 min	1 h	10-100 year	

Hindcasts: Reanalysis

#Plethora #Free #GladeUsers

Global.

Atmosphere/Ocean.


Datasets.

~10-100km Surface + ~100m AGL

1-12 hours.

10-100+ years.

Free.

Hindcasts: Downscaled Reanalysis

Mesoscale Models

Atmosphere.

Use Reanalysis as input.
Refined landuse/orography.

1-10 km Surface + [10,20,...,250

Hourly.

10-30 years.

Commercial product.

#ModelsNestedInModelsNestedInModels

RUNE project, DTU Wind Energy, Final Report. Chapter 3.

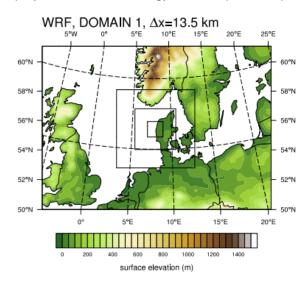
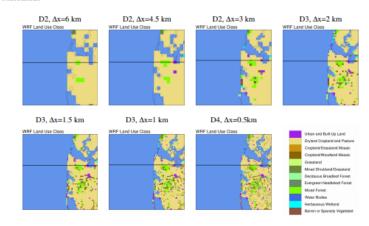
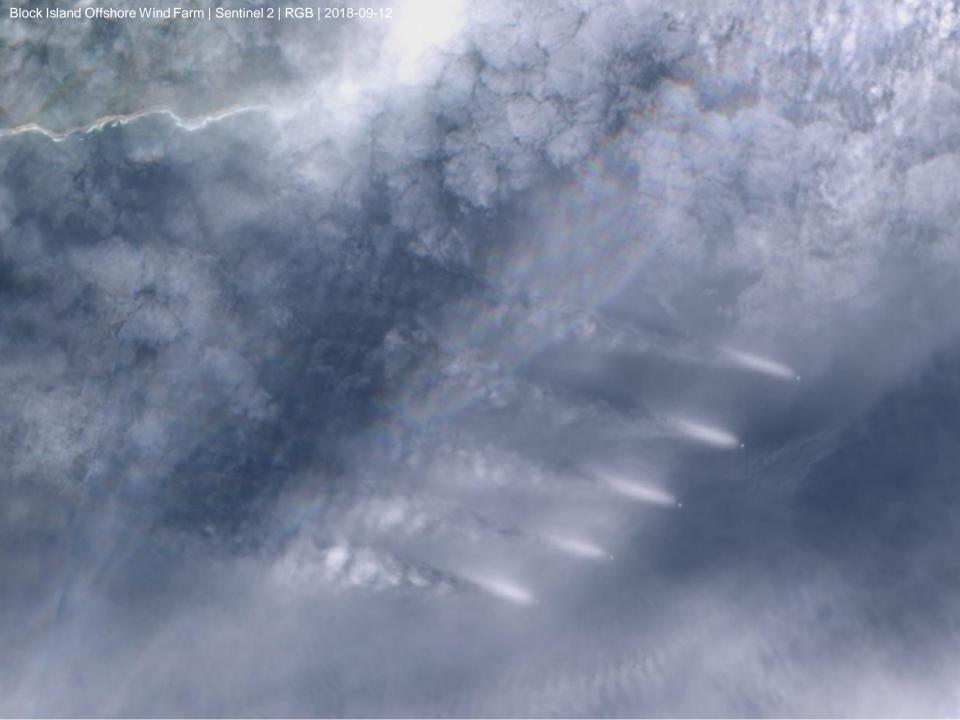




Figure 3. Surface elevation (m) of the outer domain with the location four nested model domains indicated.

7

Figure 4. Land use classes derived from the CORINE dataset in the region of the fourth domain. The solid line shows the location of the cross section analyzed in Sec. 6.3.

Normal Wind Conditions

#Introduction

Normal Wind Conditions = <u>Wind distribution</u> + Shear exponent + <u>Free Stream TJ</u>

Not in this presentation.

State of the Art:

measurements

- + long-term correction (reanalysis/mesoscale)
- + spatial extrapolation.

Typical problem:

- I have some long-term corrected wind distribution at height *h* at location *A*, while the wind farm is at location *B*.
- I can choose between several model products, for ex:

A map over average 20-years wind speeds, at h, which covers A and B.

A time series at location A, and one at location B.

- The spatial resolution of both products vary between the suppliers.
- What product should I choose ?

Normal Wind Conditions

For design of foundations, the mean wind conditions + shear are of lesser importance compared to the wave conditions and park TI. The accuracy demand is less than that of wind resource assessment.

Typically: Normal Wind Conditions are taken from Wind Resource study.

Yet, it is important to capture correctly:

the wind rose

bi-modal distributions

shear exponent [0.2Vref; 0.4Vref]

Reminder: from literature (and from experience), mesoscale model fidelity can decrease when the resolution increases.

#WindResourceAssessmentIsLaw

Near-shore wind resource estimation using lidar measurements and modelling

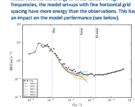
Rogier Floors, Andrea N. Hahmann and Alfredo Peña DTU Wind Energy

PO.026

The atmospheric flow in the coastal zone is vestigated using (scanning) lidars, mast WRF model is set-up in 12 different configurations sing 2 planetary boundary-layer schemes, 3 ontal grid spacings and varied sources of land e, and initial and lower boundary conditio

Objectives

- Describe the impact of boundary layer scheme resolution, land use data and atmospheric forcing on the WRF modelled wind speed
- Estimate the wind resource using scanning an vertically profiling lidars


Horizontal transects

perimental site from 5 km offshore up to 2 km inland is shown above. Data were filtered based on the CNR ratio surement quality) and availability in the whole transect, leaving 731 transects at 50, 100 and 150 m. The model output from all simulations was extracted during

Generally the model prediction show slightly higher wind speeds offshore. Over land at 50 m the observed wind speed is much lower than the modelled wind . The WRI model cannot capture the effect of the cliff well, partly due to its coarser resolution.

Both scanning lidar systems agree well far offshore. The vertical profiling lidars show a lower mean wind speed.

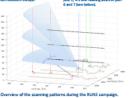
Vertical profiles

Velocity spectra and error metric

atmospheric motions. Below the spectral energy from the

cup anemometer at 100 m at the Høysøre mast is shown

as a function of frequency. At low frequencies (left) the


model and observations compare well, showing the

model resolves the energy at these scales. At high

Velocity spectra are often used to gain insight in the

ability of models or observations to represen

during the whole campaign for all sites, for example the coefficient (R). There were 237493 10-minute mean. measurements available. The simulations with the MVI cheme and the ERA-interim boundary conditions have the lowest RMSE and mean absolute error It can be seen that using a higher resolution leads to worse error

ing lidars, the red line denotes the Edar buoy and the dark

Model set-ups

MODEL				TOTAL COLLEGE	monzonan
Simulation	Bound. cond.	scheme		source	grid spac- ing [m]
YSU_2	FNL	YSU	DMI	CORINE	2000
YSU_1	FNL	YSU	DMI	CORINE	1000
YSU _{0.5}	FNL	YSU	DMI	CORINE	500
MYJ_2	FNL	MYJ	DMI	CORINE	2000
MYJ_1	FNL	MYJ	DMI	CORINE	1000
MY3 _{0.5}	FNL	MYJ	DMI	CORINE	500
YSUMBERT	FNL	YSU	HR	CORINE	2000
MYJanast	FNL	MYJ	HR	CORINE	2000
YSUUSCS	FNL	YSU	DML	USGS	2000
MYJesos	FNL.	MYJ	DMI	USGS	2000
YSUgua	ERA	YSU	DMI	CORINE	2000
MYlms	FRA	MYI	DMI	CORINE	2000

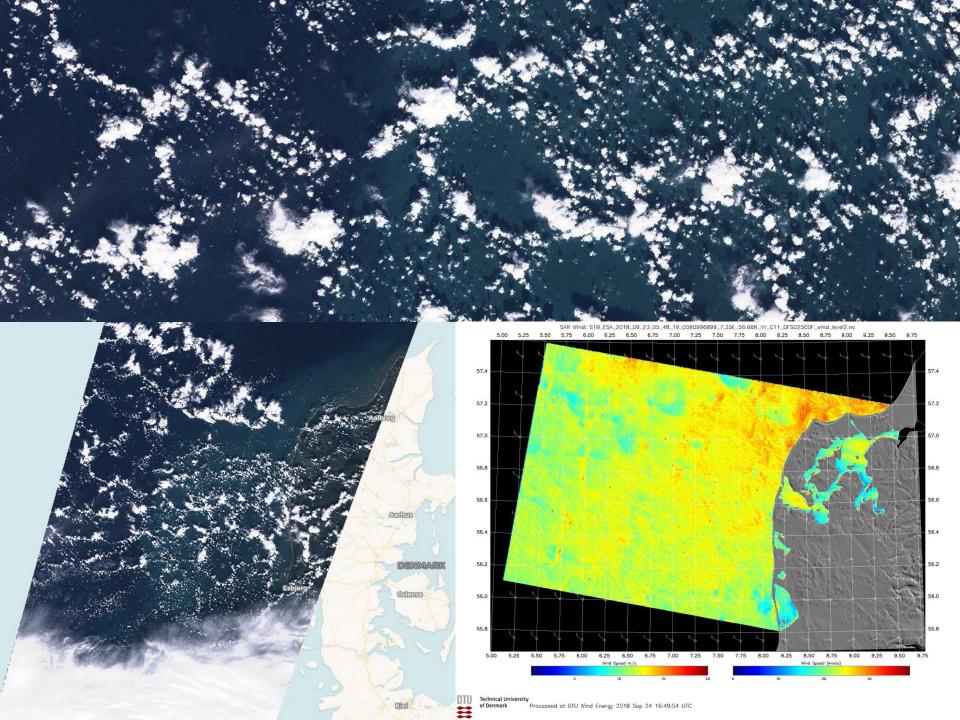
del setups were run from the 1 Nov 2015 to 1 Mar 2016 using the WRF model, version 3.6, using 70 vertical levels with he model top at 50 hPa; The first 10 levels are located pproximately at: 5.6, 17.4, 29.7, 42.7, 56.5, 71.0, 86.3, 102.5,

Model		PBL			horizontal
Simulation	Bound.	scheme	source	SOurce	grid spac-
	cond.				ing [m]
YSU_2	FNL	YSU	DMI	CORINE	2000
YSU_1	FNL	YSU	DMI	CORINE	1000
YSU _{0.5}	FNL	YSU	DMI	CORINE	500
MYJ_2	FNL	MYJ	DMI	CORINE	2000
MYJ_1	FNL	MYJ	DMI	CORINE	1000
MYJ _{0.5}	FNL	MYJ	DMI	CORINE	500
YSUmesst	FNL	YSU	HR	CORINE	2000
MYJanast	FNL	MYJ	HR	CORINE	2000
YSUUSGS	FNL	YSU	DML	USGS	2000
MYJusos	FNL	MYJ	DMI	USGS	2000
YSUgga	ERA	YSU	DMI	CORINE	2000
MYJena		MYJ	DMI	CORINE	2000

	365
	Albert
•	Dun
+	Horsey Shot
	Lidar booy
	WL986
	that shape
	seen

the bias is generally less than 0.5 m/s. Note the different scale at the x-axis: the wind speed at the inland location is much lower than at offshore locations close to the ground. At location two, two lidars were measuring at he same location and both of them are shown.

Conclusions


The WRE modelled wind speed was close to scanning lidar observations in a transect across the coastline, although all simulations showed wind speeds that wer slightly higher than observed. Inland at 50 m, the model did not capture the strong decrease in mean wind speed resulting from the surface roughness change when moving eastward from the coastline. Using ERA-interi data as boundary conditions improved the model skill scores. Using a finer horizontal grid spacing deteriorates the model performance. Modelled and observed spectra were compared and showed that the horizontal grid spacing had a large impact on the ability of the differen setups to capture high frequency atmospheric motions. Combining the WRF model with lidar measurements ca coastal zone

offshorewind2017.com

#OneOutOf50,000

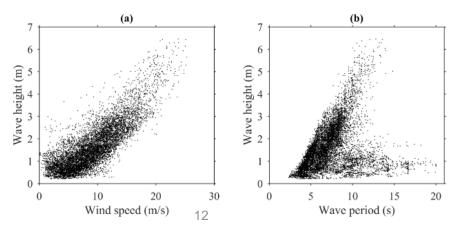
For one load calculation (wtg + fou):

Wind Speed, shear, TI (10-minute)

Wave Height and Period -> Wave spectrum (typically 3-hours)

Wind Direction and Wave Direction

State of the Art for parametrisation of sea state: use of spectral wave model driven by


a reanalysis dataset (at 10mMSL).

Article Full-text available

Probabilistic Forecasting of Wave Height for Offshore Wind Turbine Maintenance

January 2018 · European Journal of Operational Research DOI: 10.1016/j.ejor.2017.12.021

Fig. 4. (a) Scatter plot of wave height and wind speed. (b) Scatter plot of wave height and period.

Rijksdienst voor Ondernemend

Wind Farm Zone Hollandse Kust (zuid) & Hollandse Kust (noord)

How do 10mMSL extrapolated 10-minute measurements compare with 1-hour reanalysis data?

Figure 3.16 Scatter comparison of measured and CFSR wind speeds at K13, K14, Europlatform and LEG (left to right and top to bottom). Based on CFSR U₁₀ data

Ħ

Wind Farm Zone Hollandse Kust (zuid) & Hollandse Kust (noord)

How do 10mMSL extrapolated 10-minute measurements compare with 1-hour reanalysis data ?

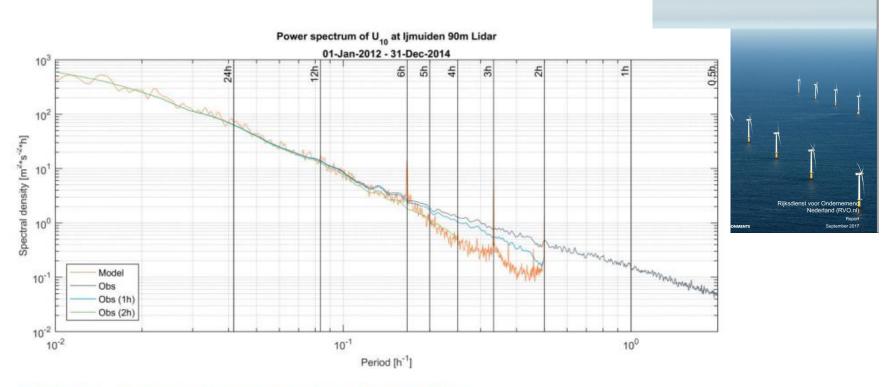


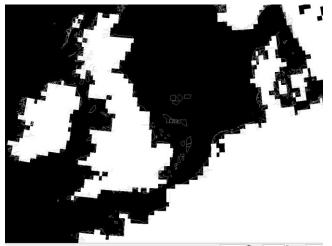
Figure 3.13 Frequency power spectrum of U₁₀ at MM Ijmuiden

We now have two wind datasets, that need be used for design:

- > The Normal Wind Conditions at hub height: meso- to micro scale information.
- > The wind field used for driving the spectral wave model: synoptic wind information.

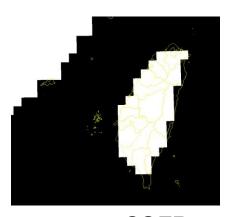
Method:

- 1) When both wind distributions can be fitted using Weibull: scale the reanalysis wind field so that it matches the one from the wind resource.
- 2) Derive wind/wave correlation using wind time series from 1).


In effect, the wind speed time series used for deriving the correlation has a much lower fidelity than the one from the wind resource. However, this is usually acceptable as <u>the most important is to preserve the correlation between wind and waves</u>.

Caveats:

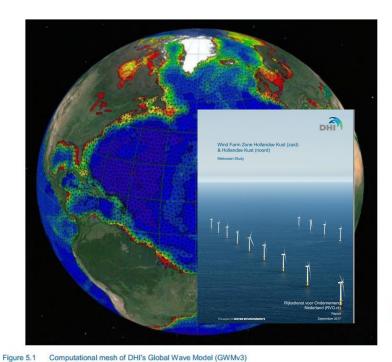
- What if the distributions are not well represented by Weibull ?
- > What if the wind roses show a significant difference ?
- What id the hub height is only mildly correlated with the surface wind?
- > Generally: the low-fidelity of the scaled reanalysis time series.


Note on the importance of the landmask spatial resolution of the reanalysis dataset:

CSFR v2

#ERA5vsCFSR

Caveats:


- > What if the distributions are not well represented by Weibull ?
- > What if the wind roses show a significant difference ?
- > Generally: the low-fidelity of the scaled reanalysis time series, for any other use...

So how could this be improved? By driving the wave model with a wind dataset which contains both an good fidelity 10m and 100m wind. For instance:

- > The best-reanalysis-dataset-ever-so-far: ERA5. It contains both a quality 10m and a quality 100m wind time series that require less adjustments than other reanalysis.
- > Or, use a mesoscale model (WRF) wind dataset to drive the spectral wave model.

Caveats:

- ➤ Need make sure that there is no loss of fidelity of the wave model (!). Only part of the wave spectrum is driven by local winds, therefore wave model nesting is crucial for success. Calibration is always expected in any case.
- > With WRF: one mesoscale time series is (of course) not enough. Large custom-made domains are needed. Therefore this is a more expensive option.

| SWNS mesh | Swns mesh | Substitution | Swns mesh | Swns

Figure 5.4 Domain of the regional DHI North Sea wave model, SW_{NS}

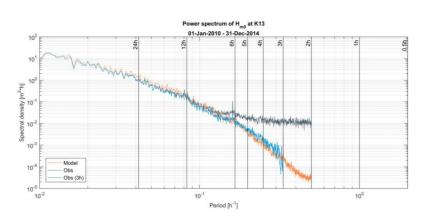


Figure 5.26 H_{m0} power spectra comparison at K13 for model and observations with different window averaging

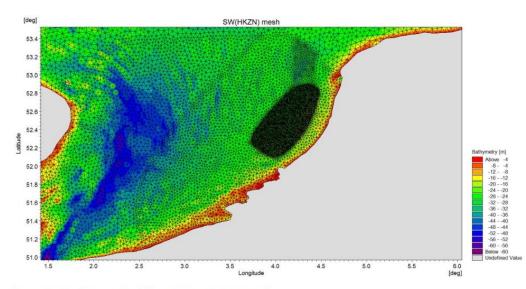


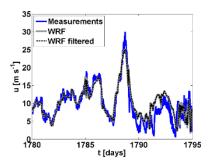
Figure 5.35 Zoom at the HK area from the local mesh

Extreme Sea State

Assessment of extreme loads from wind and waves. Here, extreme 10-minute wind speed need be combined with extreme 3-hour seastate. Reanalysis data is not an option for assessing the 10-minute extreme wind.

Extreme wind estimate can be made using WRF, but the results need be corrected. Here again, increasing the spatial resolution may not help.

Table 1.1 Recommended wind speed conversion factors for tropical cyclone conditions.


Exposure at +10 m		Reference		Gust Factor G _{r,To}					
Class	Description	Period	Gust Duration τ (s)						
Class	Description	$T_o(s)$	3	60	120	180	600		
		3600	1.75	1.28	1.19	1.15	1.08		
	D	600	1.66	1.21	1.12	1.09	1.00		
In-Land	Roughly open terrain	180	1.58	1.15	1.07	1.00			
	terrain	120	1.55	1.13	1.00				
		60	1.49	1.00					
	Offshore winds at a coastline	3600	1.60	1.22	1.15	1.12	1.06		
		600	1.52	1.16	1.09	1.06	1.00		
Off-Land		180	1.44	1.10	1.04	1.00			
		120	1.42	1.08	1.00				
		60	1.36	1.00					
	Onshore winds at a coastline	3600	1.45	1.17	1.11	1.09	1.05		
Off-Sea		600	1.38	1.11	1.05	1.03	1.00		
		180	1.31	1.05	1.00	1.00			
		120	1.28	1.03	1.00				
		60	1.23	1.00					
At-Sea		3600	1.30	1.11	1.07	1.06	1.03		
		600	1.23	1.05	1.02	1.00	1.00		
	> 20 km	180	1.17	1.00	1.00	1.00			
	offshore	120	1.15	1.00	1.00				
	1	60	1.11	1.00					

PAPER • OPEN ACCESS

Extreme Winds in the New European Wind Atlas

To cite this article: David Bastine et al 2018 J. Phys.: Conf. Ser. 1102 012006

View the article online for updates and enhancements.

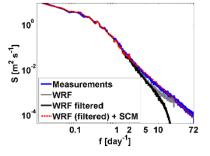


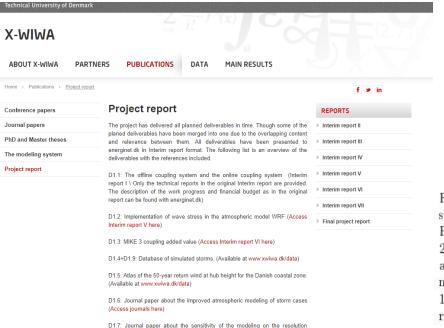
Figure 2. Wind speed time series at the location of FINO1.

Figure 3. PSD of measurements (blue) and simulations (gray) and filtered simulations (black). The red dashed line shows the corrected PSD based on the filtered spectrum.

Annual average max. $[m s^{-1}]$	FINO1	FINO2	FINO3	Cabauw
WRF	27.8 ± 0.6	26.2 ± 0.6	27.4 ± 0.6	20.8 ± 0.4
WRF + SCM	30.0 ± 0.7	28.3 ± 0.7	29.6 ± 0.6	22.3 ± 0.4
Measurements	30.7 ± 1.1	28.4 ± 0.8	30.8 ± 1.0	24.4 ± 1.1
50-year wind $[m s^{-1}]$				
WRF	32.8 ± 2.3	31.6 ± 2.3	32.2 ± 2.2	24.3 ± 1.5
WRF + SCM	35.9 ± 2.5	34.8 ± 2.5	34.7 ± 2.3	26.1 ± 1.6
Measurements	39.3 ± 3.6	35.3 ± 3.0	38.5 ± 3.5	34.0 ± 3.9

Table 2. Extreme wind speeds: Estimates of average annual maxima and 50-year winds for measurements, WRF simulations and the corresponding corrected value. The statistical uncertainties are denoted as one standard deviation.

		FINO1	FINO2	FINO3	Cabauw
	WRF + SCM (Correction factor)	1.08	1.08	1.08	1.07
•	4 1 (MTDT)		1.00	1.10	
	Annual average maxima (Measurements/WRF)	1.10	1.08	1.12	1.17
	50-year wind (Measurements/WRF)	1.20	1.12	1.20	1.38


Table 3. Estimated correction factors and ratios of measured and simulated extreme winds.

Extreme Sea State

9.2 Offline CFSR-MIKE modeling 15 storms: assessment of CFSR wind forcing

The calibrated MIKE 21 SW model was also forced with the global CFSR wind field (corrected for atmospheric stability, see section 5.5.1) for the 15 calibration storms. The results are presented in the following sections. It should be noted that the wave model was calibrated to the WRF wind field (see section 5.6) and not the CFSR wind field, however a comparison was still made to assess the impact of the different wind fields.

The results from the model test are presented in Fig. 49 to 50. The significant wave height produced from the CFSR wind field forced MIKE 21 SW model produced a reasonable representation of the observations for the North Sea and western Danish Coastline. From the Taylor diagrams on the left hand side of Fig. 50 and Fig. 51, a comparison to the final calibration of the WRF forced model can be made. Of these stations, neither the CFSR or WRF forced wave model is suggested to outperform the other. Note that the full storm list cannot be compared as CFSR forced model was only run for the 15 calibration storms, and thus comparisons are limited, however with these results there is no strong evidence of significant differences on wave modelling when using CFSR reanalysis or WRF downscaling.

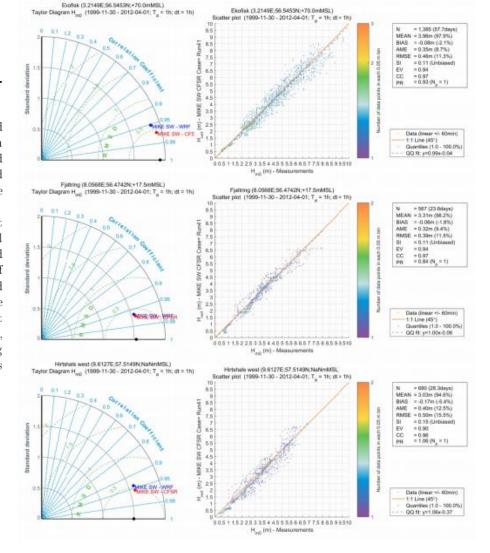
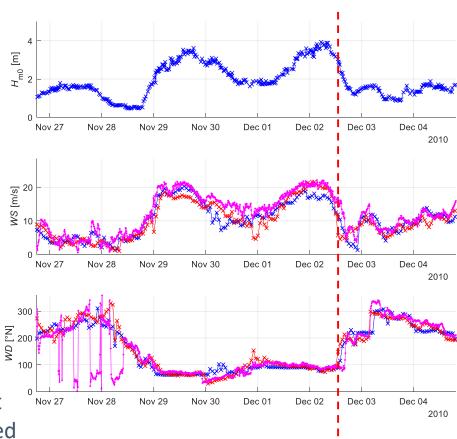
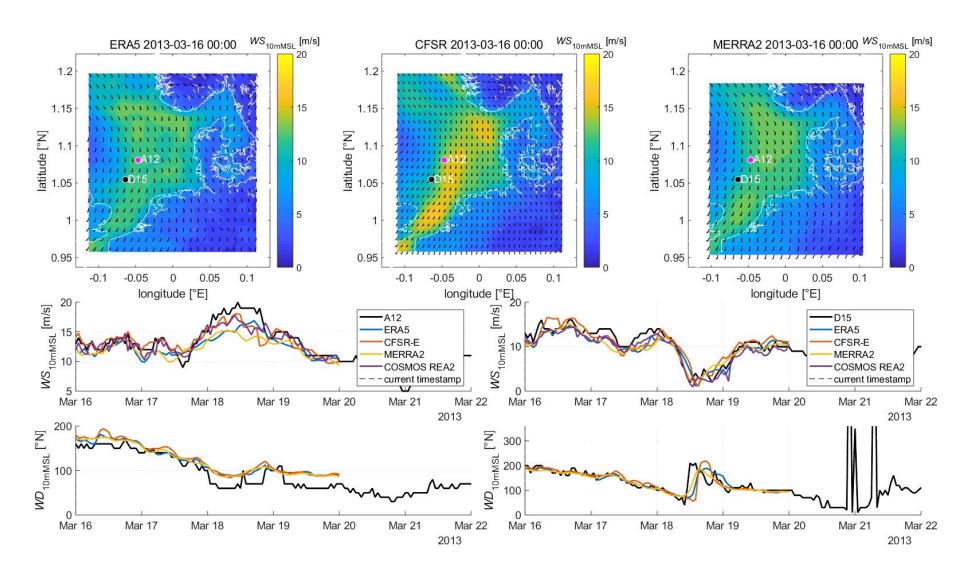


Figure 49: Comparison between WRF-MIKE and CFSR-MIKE over 15 storms. A statistical representation of significant wave height (H_{m0}) at Ekofisk (upper panels), Fjaltering (middle panels) and Hirtshals West (lower panels) for the two offline MIKE 21 SW model with WRF (blue) and CFSR (red) wind forcing through a Taylor Diagram (left panel). The black point represents the observations. Scatter plot of the modelled significant wave height with forcing from the global CFSR wind field for the 15 calibration storms between Nov-1999 and Apr-2012 (right panel, corresponding to red point in Taylor diagram).


Severe Sea State

Here, we estimate, for normal wind conditions (for instance 6 m/s), what the extreme 3-hour seastate is.


This happens for instance when the wind speed suddenly drops after a long-lasting storm.

Generally well captured by WRF-driven models, and not well captured when using reanalysis datasets.

However, these load cases are generally not design-driving, and they can be characterised conservatively.

A medium storm that is hard to catch

Wrap-up

For Normal Wind Conditions:

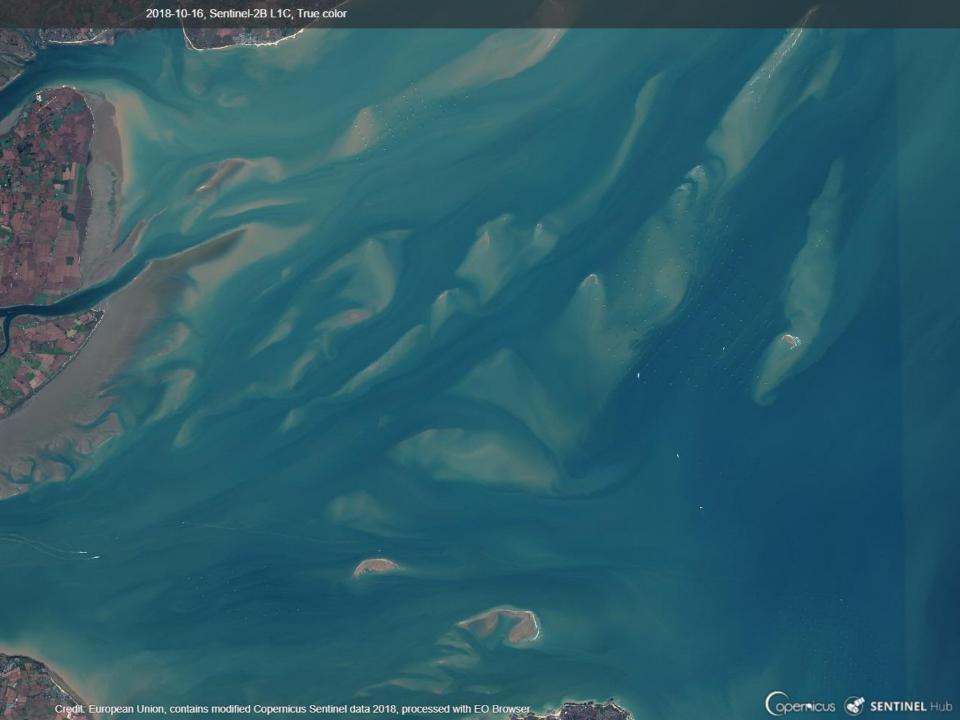
- > Best is to rely on detailed wind resource assessment (measurements + mesoscale).
- > For that purpose, increased spatial resolution of the mesoscale model is not always key.

Recommended to focus instead on the parametrisation schemes and the orography/landuse input.

★ > The model is very likely making an error – need to guess and assess uncertainty.

For Normal Sea State:

- > Spectral wave models driven with reanalysis data work satisfactorily.
- > Always need to assess effect of land/sea mask.


★ > Local wave models driven by higher fidelity wind data do not necessarily perform much better, but provide a hub height wind time series that requires only small adjustments -> increased fidelity.

For Extreme and Severe Sea State:

Advantage in using mesoscale time series compared to reanalysis.

> Yet, the 10-minute extreme wind speed is out of reach for models.

